End-to-End Detection and Re-identification Integrated Net for Person Search
نویسندگان
چکیده
This paper proposes a pedestrian detection and reidentification (re-id) integration net (I-Net) in an end-to-end learning framework. The I-Net is used in real-world video surveillance scenarios, where the target person needs to be searched in the whole scene videos, while the annotations of pedestrian bounding boxes are unavailable. By comparing to the successful CVPR’17 work [Xiao et al., 2017] for joint detection and re-id, we have three distinct contributions. First, we introduce a Siamese architecture of I-Net instead of 1 stream, such that a verification task can be implemented. Second, we propose a novel on-line pairing loss (OLP) and hard example priority softmax loss (HEP), such that only the hard negatives are posed much attention in loss computation. Third, an on-line dictionary for negative samples storage is designed in I-Net without recording the positive samples. We show our result on person search datasets, the gap between detection and re-identification is narrowed. The superior performance can be achieved.
منابع مشابه
End-to-End Deep Learning for Person Search
Existing person re-identification (re-id) benchmarks and algorithms mainly focus on matching cropped pedestrian images between queries and candidates. However, it is different from real-world scenarios where the annotations of pedestrian bounding boxes are unavailable and the target person needs to be found from whole images. To close the gap, we investigate how to localize and match query pers...
متن کاملPerson Re-identification: Past, Present and Future
Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use ...
متن کاملSemantics-Aware Deep Correspondence Structure Learning for Robust Person Re-Identification
In this paper, we propose an end-to-end deep correspondence structure learning (DCSL) approach to address the cross-camera person-matching problem in the person re-identification task. The proposed DCSL approach captures the intrinsic structural information on persons by learning a semanticsaware image representation based on convolutional neural networks, which adaptively learns discriminative...
متن کاملPersonNet: Person Re-identification with Deep Convolutional Neural Networks
In this paper, we propose a deep end-to-end neural network to simultaneously learn high-level features and a corresponding similarity metric for person re-identification. The network takes a pair of raw RGB images as input, and outputs a similarity value indicating whether the two input images depict the same person. A layer of computing neighborhood range differences across two input images is...
متن کاملMulti-Channel Pyramid Person Matching Network for Person Re-Identification
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the colortexture distributions to address the problem of person reidentification. In particular, we learn separate deep representations for semantic-components and color-texture distributions from two person images and then employ pyramid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018